首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   6篇
  国内免费   13篇
化学   84篇
晶体学   3篇
力学   6篇
数学   7篇
物理学   266篇
  2023年   22篇
  2022年   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   13篇
  2013年   33篇
  2012年   12篇
  2011年   25篇
  2010年   20篇
  2009年   22篇
  2008年   22篇
  2007年   26篇
  2006年   25篇
  2005年   8篇
  2004年   8篇
  2003年   16篇
  2002年   14篇
  2001年   18篇
  2000年   16篇
  1999年   11篇
  1998年   10篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
361.
The traditional ultrafast electric vacuum devices are usually based on the mechanism of photoelectric conversion, and their performance is restricted by factors such as material response and space-charge effect. It is difficult for the devices like microchannel plate framing cameras, Dilation X-ray Imager (DIXI) , streak cameras to achieve high temporal resolution (100 fs similar to 1 ps) and spatial resolution (similar to mu m) two-dimensional imaging. Ultrafast imaging technology based on photorefractive effect is a new ultrafast diagnostic technology, which has the advantages of high spatiotemporal resolution, all-optical, all and anti radiation. The nonequilibrium carrier lifetime of low temperature grown AlGaAs (LT-AlGaAs) can reach ps-level. The Ultrafast Response Chip (URC) made of LT-AlGaAs has the characteristics of high temporal resolution, meanwhile, good spatial performance is the other key factor for its application. In this paper, the spatial performance of LT-AlGaAs URC is experimentally studied using X-ray, generated by high-energy nanosecond pulsed laser-produced plasma, as the signal. The results show that the URC has the ability of high spatial resolution and large-scale imaging in the X-ray energy dynamic range of 120: 1. The optimal spatial resolution is >= 35 1p/mm (R) MTF = 0.1, and the imaging frame can reach 6.7 mm x 6.7 mm. The results further verify the feasibility of ultrafast diagnostic technology based on photorefractive materials. In the future, LT-AIGaAs URC will be combined with ultrafast framing technologies such as dispersion framing and polarization chirp framing to realize multi-frames and high spatiotemporal resolution two-dimensional imaging.  相似文献   
362.
This work proposes a novel method for measuring the intrinsic activity of single metal-based nanoparticles towards water reduction in neutral media at industrially relevant current densities. Instead of using gas nanobubbles as proxy, the method uses optical microscopy to track the local footprint of the reaction through the precipitation of metal hydroxide, which is associated to the local pH increase during electrocatalysis. The results show the electrocatalytic activities of different types of metal nanoparticles and bifunctionnal core-shell nanostructures made of Ni and Pt, and demonstrate the importance of metal hydroxide nano-shells in enhancing electrocatalysis. This method should be generalizable to any electrocatalytic reaction involving pH changes such as nitrate or CO2 reduction.  相似文献   
363.
Photoacoustic imaging (PAI), a state-of-the-art noninvasive in vivo imaging technique, has been widely used in clinical disease diagnosis. However, the design of high-performance PAI agents with three key characteristics, i.e., near-infrared (NIR) absorption (λabs>800 nm), intense PA signals, and excellent photostability, remains a challenging goal. Herein, we present a facile but effective approach for engineering PAI agents by amplifying intramolecular low-frequency vibrations and enhancing the push-pull effect. As a demonstration of this blended approach, we constructed a PAI agent ( BDP1-NEt2 ) based on the boron-dipyrromethene (BODIPY) scaffold. Compared with indocyanine green (ICG, an FDA-approved organic dye widely utilized in PAI studies; λabs=788 nm), BDP1-NEt2 exhibited a UV/Vis-NIR spectrum peaked at 825 nm, superior in vivo PA signal intensity and outstanding stability to offer improved tumor diagnostics. We believe this work provides a promising strategy to develop the next generation of PAI agents.  相似文献   
364.
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs’ endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.  相似文献   
365.
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM−C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM−C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core–shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.  相似文献   
366.
The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号